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A b s t r a e t ~ h e  mechanisms responsible for the initial growth of  sand waves on the surface of a settled 
layer of  particles are studied experimentally and theoretically. Experiments employ water glycerin 
solutions of  1 14cP and glass spheres (p~ = 2.4 g/cm 3) that are either 100 or 300/zm in diameter. The 
particle Reynolds number  and Shields parameter are of  order one and the flow Reynolds number  is of  
order 1000 to 10,000. Experimentally obtained regime maps  of sand wave behavior and data on the 
wavelengths of  the sand waves that first appear on the surface of  the settled bed are presented. Turbulence 
in the clear liquid is not necessary for formation of  waves and there is no dramatic change in behavior 
as the flowrate is increased across the turbulent transition. The initial wavelength varies as the Froude 
number  to the first power. Because a flowing suspension phase is observed before waves form, linear 
stability analysis of  the clear-layer-suspension-layer cocurrent two-phase flow is presented. The suspension 
phase is modeled as a cont inuum that has an either constant  or exponentially increasing viscosity. Neither 
of  the models correctly predicts the wavelength for the first observed waves, their growth rate or their 
speed. However, the initial wavelength is found to agree well with the trajectory length for a saltating 
particle obtained from a model for forces on individual particles. 
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1. I N T R O D U C T I O N  

Flows of small diameter particle suspensions are common in both environmental and industrial 
t ransport  problems. One environmental concern is the erosion of topsoil due to irrigation. This 
leads to the loss of  valuable topsoil and to the extraction of pesticides and fertilizers which 
inevitably enter nearby rivers and lakes. Industrial processes that involve suspension flow include 
dredging, mining operations and long distance transport  of  materials by way of pipelines. In most 
industrial processes, the carrier fluids travel at high enough velocities to disperse the particles 
uniformly throughout the pipe. However, below limit deposit velocities (Sommerville 1991; Davies 
1987) particles move toward the lower portion of  the pipe. Here they either settle completely or 
distribute themselves non-uniformly between the clear carrier fluid and the stationary settled bed 
where they travel as bed load. Rijn (1984) describes bed load as consisting of rolling and sliding 
particles that contact the bed very frequently and saltating particles that are ejected upward and 
travel many particle diameters before again contacting the bed. Garcia & Parker (1991) review a 
number  of  models that are intended to predict the entrainment rate for non-cohesive particles. 
Under many conditions where there is bed load transport, waves can form in the surface of the 
settled layer. I f  there is sufficient time, distance and available solids, the waves can grow large 
enough to clog the pipeline. Kennedy (1963) shows photographs of different wave forms that are 
observed in settled beds. 

While the ability to predict the growth of sand waves a pr ior i  is an important  problem, it is 
unfortunate that the mechanisms leading to wave formation are in doubt. In addition, while some 
agreement between experiments and theory have been achieved, there does not seem to be a 
mathematical  formulation that can always predict the conditions where waves form and the 
resultant wavelength. Wave (or dune or ripple) formation on a settled particle bed has been studied 
by Bagnold (1956), Richards (1980) and Takahashi et  al. (1989). Dunes that appear are roughly 
periodic and travel as trains in the direction of the flow. Typically, researchers have associated the 
formation of dunes with either turbulence (Williams & Kemp 1971; Richards 1980; Sumer & 
Bakioglu 1984) or the growth of an existing perturbation on the surface of the bed (Kennedy 1968). 

I123 



1 1 2 4  w . C .  K U R U  e t  al, 

Yalin (1972) states that the growth of dunes is due to a disturbance in the structure of  turbulence 
caused by a discontinuity on the surface. However, our experiments show that sand waves also form 
on smooth surfaces when the flow is laminar. In order to clarify the conditions for which sand 
waves form, we examined the formation of sand waves on both sides of  the laminar-turbulent  
transition. We found that there is no observable distinction between the mechanisms which form 
sand waves at Reynolds numbers across the transition. 

Because a flowing sand layer is observed during the sand wave formation process, it is possible 
that research on the formation of interfacial waves in a two-layer flow consisting of a clear liquid 
phase and a flowing suspension phase is relevant. Liu (1957) first proposed that the formation of 
waves on the surface of a particle bed are a consequence of a Kelvin-Helmholtz type instability 
between two fluids of  different densities. Later, Shirasuna (1973) extended this work. In their study 
of enhanced sedimentation problems, Schaflinger et al. (1990) observed the formation of  waves at 
the interface between the resuspended layer of particles and the clear fluid. Zhang et al. (1992) 
modeled this instability as a clear fluid superposed over a suspension with constant physical 
properties. More recently, Schaflinger (1994) suggested a connection between the formation of 
interracial waves in a clear-fluid suspension flow and the formation of waves in a mono-layer of  
settled particles. 

This paper presents new experimental data on the formation of sand waves in horizontal pipe 
flow and linear stability analysis of  a two-layer flow consisting of a resuspended layer of  particles 
(i.e. suspension phase) and a clear fluid phase within two-dimensional Hagen-Poiseuille flow, as 
depicted in figure 1. Observations in this study confirm the presence of a separate flowing particle 
phase on the surface of the particle bed. While it is well known that viscous shear can cause particle 
resuspension (Leighton & Acrivos 1986), if the suspension phase is too thin or if the particles travel 
primarily by "rolling" along the surface, representation of the solids phase as a continuum is not 
assured. Furthermore,  there is no guarantee that waves forming on the clear-laye~suspension 
interface are the cause of, or are related to, sand waves. Linear stability of  the clear-liquid-particle 
phase two-layer flow is addressed here by the use of  both constant and spatially varying 
(corresponding to the increase in particle concentration downward) viscosity profiles. Viscous 
resuspension theory (Leighton & Acrivos 1986) provides a model for the particle phase. The 
experimental wavelengths, growth rates and speeds for sand waves do not match predictions from 
either of the models, indicating that sand waves do not result from an instability of the two-layer 
flow. However, the measured wavelength increases with Froude number to about the first power 
suggesting that sand wave formation is related to the behavior of  individual sand particles. The 
measured wavelength is found to agree well with the trajectory flight length for a saltating particle 
obtained from a model similar to Rijn (1984) for forces on individual particles. 

2. E X P E R I M E N T A L  

2.1. Approach 

The intent of  the experiments was to examine the initial formation of sand waves on the surface 
of an erodible particle bed for conditions where the clear liquid phase ranges from laminar to 
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Figure 1. Flow configuration for a two-dimensional Hagen Poiseuille/Couette flow with a spatially 
dependent viscosity profile in the lower phase. 
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Figure 2. Schematic diagram of the experimental apparatus. 

turbulent flow. These experiments produced data on the incipient motion of the particles and on 
the wavelengths of  the first observed waves. The apparatus that is used for this study consists of  
a pump,  a supply tank, a rotameter,  a particle input section and a horizontal test section. The test 
section is a clear acrylic pipe 7 m long and has a diameter of  31.1 mm. Figure 2 shows the apparatus 
schematically. Although a circular geometry may complicate the problem and the ideal geometry 
would be a wide rectangular channel, the pipe wall assists experimentation by restraining lateral 
motion of  the particle bed. Because the flowing suspension region is about  2 cm wide and less than 
2 mm thick, it is thought that the asymmetric effects of  the circular pipe are not significant and 
the flow is locally two-dimensional. To facilitate easier wavelength measurements, a high intensity 
lamp is positioned downstream of the wave fronts to cast shadows onto the surface of  the bed. 
Motion of the particles is observed through a rectangular acrylic jacked filled with the carrier fluid 
to correct for the refraction of light caused by the curvature of  the pipe. 

The glass particles occupied a small fraction of the area at the bot tom of the pipe and would 
be expected to have minimal effect on the transition to turbulence. This was verified by use of  a 
hot film anemometer.  Occasional disturbances in the Laminar flow were observed over most of  the 
range of  Reynolds numbers, particularly close to the bot tom surface when the waves had grown 
large. Disturbances occurred more often as the Reynolds number was increased and a signal that 
looked fully turbulent was observed at a Reynolds number  of  about 6000. The occurrence of 
intermittent disturbances in an otherwise laminar flow would be expected because the separation 
regions behind the wave crests can sometimes detach. 

The particles were Cataphote  glass spheres with diameters of  approximately 100 and 300 #m. 
A tight particle distribution was assured by sieving the particles between 88 and 106 #m,  and 250 
and 354 # m  sieve trays, respectively. The carrier fluid consisted of mixtures of  glycerin and water 
with viscosities ranging between 1 and 14 cP. The densities of  the glass spheres and the carrier fluid 
were 2.4 and 1.1 g/cm 3, respectively, yielding a density difference Ap of about  1.3 g/cm 3. 

2.2. Results and observations 

Mapping the stability regimes for motion of particles and growth of sand waves was undertaken 
in the first sets of  experiments. Figure 3(a) and (b), showing 7; (Shields parameter  7; = r/agAp) 
versus Rep (Rep= 2ap2v*/#2), represent the stability regimes for the 300 and 100/~m spheres, 
respectively. The term "particle mot ion"  indicates the conditions where sand particles were first 
observed to be moving. The variable ~ is the shear stress on the bed, a is the particle radius, g is 
gravitational acceleration, Ap is the density difference between the particles and the carrier fluid, 
P2 and #2 are the density and viscosity of  the carrier fluid and v* is the friction velocity 
(v* = (~/p2)l/Z). Shear stresses for the experiments were obtained from friction factor estimates of  
the Hagen-Poiseuille law for laminar flows and the Blasius formula for turbulent flows. The 
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Figure 3(a). Shields diagram for flow regimes of the 300 t~m 
glass spheres. Viscosity increases towards the left. 
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Figure 3(b). Shields diagram for flow regimes of the 100 #m 
glass spheres. Viscosity increases towards the left. 

collected data given by Mantz (1977) for incipient transport of  fine cohesionless grains is also 
included. Mantz 's  data represent experiments in which the glass spheres and fluids have diameters 
and viscosities between 15 and 170/tin, and 0.95 and 8 cP, respectively. Our data for incipient 
particle motion correlate well with the published data for 300 p m  glass spheres, while the 100 l*m 
spheres are mixed within the scatter. The slopes of  the curves for incipient motion and wave 
formation in figure 3(a) and (b) are approximately - 1. In the absence of inertial effects, the slope 
is expected to be zero. The deviation from zero slope is consistent with the increased importance 
of inertia (Cherukat & McLaughlin 1994). 

As liquid flow rate is increased, the presence of four regions common to both particle sizes is 
revealed. The four regimes are as follows: A, no particle motion; B, particle motion on the surface 
of the bed without wave formation; C, wave formation on the surface of the particle bed; and D, 
destruction of the bed forms. Region B represents the motion of the particles from initial rolling 
to a flowing resuspended layer of  particles without the formation of waves on the surface of the 
bed. The separate flowing suspension phase becomes more definite as the solution viscosity is 
increased. We should also point out that short wavelength waves were occasionally observed at 
the interface between the clear fluid and the suspension layer when wave formation was not 
occurring on the bed. These low amplitude waves are shorter than the initially observed surface 
waves and their relevance is discussed in section 3.4. 

In the second set of  experiments, the wavelength distributions of  the initially observed surface 
waves were measured. To produce this data, particles were injected into the test section of the 
apparatus.  A bed of particles approximately 0.5 cm thick in the center and 4-5 m long was obtained 
by carefully adjusting the individual flow rates and allowing the particles to settle. Each trial was 
begun by setting the flow rate of  the carrier fluid to a specified level; the flow was stopped when 
sand waves were first observed on the surface of the bed. Visible sand waves, predominately 
two-dimensional with heights of  approximately 2-3 mm, generally grow within a few seconds after 
the flow begins. Once all possible wavelength measurements were taken, the liquid flow rate was 
increased high enough to destroy all the bed forms. This routine was repeated until 100 wavelength 
measurements for the specified conditions were obtained. Results obtained using solutions with 
viscosities ranging between 1 and 4.3 cP, and 100 and 300 #m glass spheres are presented below. 
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Figure 4. Wavelength distributions as a function of the flow Reynolds number  for the 300/~m glass 
spheres in a 4.3 cP solution. 

Figure 4 represents the number of  occurrences of  a particular wavelength, rounded to a group 
value, per 100 measurements taken. In this instance, sand waves were found te grow under laminar 
conditions from an initially flat surface. A similar observation was made by Sumer & Bakioglu 
(1984), for a flat surface under turbulent flow conditions. Table 1 documents additional results 
pertaining to distributions of the initially observed wavelengths. In all cases the average wavelength 
increases with an increase in the flow rate of the carrier fluid. Also, with an increase in the average 
wavelength there is an increase in the spread of the wavelength distribution, as evidenced by the 
histograms. 

If the flow is maintained, dune growth continues through saturation by way of the erosion of 
particles from the upstream surface and deposition in the trough. After sufficient time, the dunes 
gradually detach from each other. Few changes are observed in either speed or shape as they 
progress downstream, beyond both saturation and detachment. Typically sand waves are two- 
dimensional but, under high shear and long time intervals, dunes become laterally asymmetric. 
Their asymmetry causes the downstream path of  the suspension phase to mutually oscillate over 
each wave. Below the point of complete resuspension, this is the most complicated pattern observed. 

Table 1. Initial wavelength data 

D o (~ m) /~2 (cP) v* (cm/s) R%o w 2mi. (cm) 2ave (cm) '~'max (cm) 

300 1 1.4 6950 2.0 4.4 7.0 
300 1 2.1 10600 3.0 5.0 7.0 
300 1 2.3 12000 4.5 7.0 9.5 
300 2.2 1.8 3550 2.0 4.1 7.0 
300 2.2 2.2 4500 3.0 7.1 12.5 
300 2.2 2.3 4800 3.5 9.5 14.0 
100 1 1.2 5550 0.8 1.4 2.4 
100 I 1.6 7800 0.5 3.3 6.0 
100 1 2.1 10600 2.5 5.4 7.0 
100 2.1 1.8 3700 1.5 5.2 9.5 
I00 2.1 2.3 5050 2.5 8.8 12.5 
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3. L I N E A R  STABILITY  ANALYSIS 

The basic supposition of  this linear stability analysis is that the problem can be modeled as a 
two-phase stratified flow. The upper phase is a clear fluid layer and the lower phase is a suspension 
of particles modeled as a continuum having either a constant or spatially increasing viscosity 
profile. The lower phase was generalized to include a spatially-varying viscosity because it was 
desired to reduce, in so far as possible, limitations of the model. For certain conditions, linear 
stability analysis predicts that waves can form on the interface of the clear-laye>suspension 
interface. A possible mechanism for the formation of the observed waves in the settled layer, 
consistent with linear stability analysis of a thin layer, would be that waves form as the result of 
an instability similar to the slow waves of Craik (1966), where the suspension phase is effectively 
"piled up". This occurs because the point of maximum shear stress and therefore maximum particle 
transport occurs upstream of the crest. Deposition will increase downstream of the point of 
maximum stress and thus particles will be deposited at the crest leading to wave growth. 

3.1. Viscosity profile 

To perform a two-layer linear stability analysis on a clear fluid superposed over a resuspending 
layer of particles, an appropriate expression for the viscosity profile in the particle layer is needed. 
A spatially increasing viscosity profile is suited for this problem because the particle concentration 
increases downward through the suspension layer. Because the origin of the instability is the 
viscosity difference between the phases, it is expected that the effect of a viscosity profile will be 
much more dramatic on the stability characteristics than the effect of a density profile. Therefore 
density variation in the resuspending layer is not considered. Below, it is shown that density 
stratification does not significantly affect the outcome of the stability results. 

As stated earlier, it is possible to derive a simple analytical model for the suspension viscosity 
profile using "viscous resuspension" theory (Leighton & Acrivos 1986). Because the particle 
Reynolds numbers for the experiments are not usually small compared with unity, it is not expected 
that the model will exactly match the experiments. However, the particle concentration, and 
therefore the viscosity, will increase downward so that this model will show qualitative differences 
from a suspension with constant physical properties. Leighton & Acrivos (1986) show that a 
balance between the shear induced diffusion flux of the particles and the sedimentation flux of the 
particles governs the resuspension of a layer of sufficiently small particles. The particle flux balance 
can be written as 

2 gApa2 
N , -  9 ~2 c~f--Dga2 = 0 ,  [1] 

where N,. refers to the flux of particles in the y direction, a is the particle radius, g is the gravitational 
constant, Ap is the density difference, f is the hindered settling factor,/t  2 is the viscosity of the carrier 
fluid and qS, b and ~) (~) = z//~r#2) denote the particle concentration, the dimensionless shear induced 
diffusion coefficient and the shear rate, respectively. Also, /~r is the ratio of the viscosity in the 
suspension to the viscosity of the clear fluid/~2. When [1] is rendered dimensionless with respect 
to the viscous resuspension length scale ~Ua (~Ua = z/Apg) and the maximum particle concentration 
¢h . . . .  the differential equation becomes 

(])max dy 9 q~max " [ 2 ]  

If the appropriate expressions, given in Chapman & Leighton (1991), for f,  /} and ~r were 
substituted into [2], the resulting differential equation would be impossible to solve analytically. 
Therefore, we approximate the viscosity profile with an exponential function. Figure 5 shows a 
comparison between the profile obtained from substituting the known correlations (Chapman & 
Leighton 1991) into [2] and the exponential profile #r = exp(-y/~a).  It is seen that the agreement 
is good except for the discontinuity in the slope at y = 0. This discontinuity in the resuspension 
model is the result of  the shear induced diffusivity vanishing as the particle concentration goes to 
zero. The exponential increase in viscosity with depth corresponds to the rapid increase in particle 
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Figure 5. Comparison between the viscosity profiles calculated using both the known correlations and 
the exponential model. 

concentra t ion.  To  generalize this expression so that  it can be used for both  cons tant  and spatially 
varying viscosities, it is convenient  to write 

kq = m e x p ( -  py t) ,  [3] 

where m is the (constant)  viscosity ratio between the phases ~2/#~, Y ~" is non-dimensional ized with 
respect  to the thickness o f  the lower layer d~, and [3 = d~ Apg/z, the ratio between the thickness 
o f  the suspension layer and the viscous resuspension length scale. This non-dimensional iza t ion  
scheme follows f rom an ensuing mathemat ica l  formula t ion  of  the linear stability problem.  For  
cons tan t  viscosity stability calculat ions /~ = 0 and m determines the viscosity ratio between the 
phases. To  produce  a spatially varying viscosity profile that  does not  have a discontinuity across 
the interface, m = 1 and fl determines the amplif icat ion of  the viscosity profile. Since this profile 
rapidly increases with depth and approaches  m as Yt  tends towards  zero, it appears  to contain the 
correct  physics and should provide  a reasonable  model  o f  the suspension layer. The values of  m 
and /3 cor responding  to the fit to [3] given in figure 5 are m = 1 and /~ = 1, for resuspension at 
vanishingly small Reynolds  numbers .  Al though the first derivative of  the viscosity profile for [3] 
differs f rom the more  exact result at the interface, the length scale over  which the difference occurs 
is small compa red  with the depth of  the lower phase. Consequent ly ,  the difference in the profiles 
near  y = 0 would manifest  itself only in the short  wave instability, which is out o f  the range of  
our  study. 

3.2. Mathematical formulation 
Although  the exper iments  cross the l amina r - tu rbu len t  transit ion, the base state velocity profiles 

are modeled  as being laminar .  These dimensional  profiles, U, (y) and U2(y), consist  of  a parabol ic  
profile and a skewed profile: 

U 2 ( Y ) = ( ~ ) y 2 + C , y  + C 2 ,  [4a] 
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where 

- k d ~  
Ul0,)=(m~_2)exp(fly)y+(\m_flT~2kd~ + C ~ ) e x p ( f l y ) + C 4 "  [4b] 

~P 
k - a x  [5] 

Here y refers to the vertical coordinate (the same as y'~ in section 3.1; henceforth the dagger has 
been dropped) non-dimensionalized with respect to the depth of the lower phase d~, and Ct, C2, 
C3 and C4 are constants given in appendix A. 

Yih (1967) gives complete details of  the derivation of the governing stability equation for the 
upper phase and all the boundary conditions. Since our derivations are similar, only a few key steps 
will be presented to illustrate the derivation of the modified lower phase Orr Sommerfeld equation. 
The two-dimensional equations, obtained from the Cauchy momentum equations, are written with 
an arbitrary viscosity profile /~(y) as 

2# 1 ~ (u + v,.,.), [6a] 
u , + u u , . + v u , . =  - P ~ - ~ e U , . ~ + ~ e e # , . ( u , . + v ~ ) +  Re "-' 

t~ 2 
v, + uv~ + vv,. = - P,. + Ree (v,~ + uxy) + Ree (It,. v, + twv, ). [6b] 

These equations are non-dimensionalized with respect to the thickness of the lower layer, the 
velocity of the interface and the carrier fluid properties. Subscripts indicate partial differentiation 
with respect to space and time, Re is the Reynolds number (Re = p2d~ u0,//~2), u0 is the interfacial 
velocity, P is the pressure function and u and v are the velocities in the x and y coordinates, 
respectively. Next, the velocity and pressure fields are decomposed into primary and perturbation 
components of motion as 

u ( x , y , t ) = U ( y ) + u ' ( x , y , t ) ,  v ( x , y , t ) = v ' ( x , y , t ) ,  P ( x , y , t ) = P ( x ) + p ' ( x , y , t ) .  [7] 

Here the prime indicates perturbation quantities. Note that the viscosity and density fluctuations 
are taken to be zero. This is because the length scale of small velocity perturbations will be less 
than a particle radius and therefore should cause no fluctuations in viscosity or density. When [7] 
is substituted into [6] terms pertaining to the base state flow and quadratic terms arising from the 
expansion are cancelled. Since we are only considering two-dimensional disturbances, the stream 
functions ;( which solve the continuity equation are given by 

~X ~X 
~ '  = U y '  ~" = -=-'~,x [8] 

The stream function is expanded in terms of a normal mode perturbation: 

Z, (x, y, t) = ~b, (y)exp[i~ (x - ct)], [9a] 

/.2 (x, y, t) = q~2 0')exp[i~ (x - ct)], [9b] 

where ~ ( v )  and q~20') represent the amplitudes of the disturbances, and the non-dimensional 
parameters, ~, c and t, are the wavenumber, complex wave speed and time, respectively. After this 
final substitution and some reorganization, a modified Orr-Sommerfeld equation for the suspen- 
sion phase 

/tq~'~' + 2#'q5'(' + (#" - 2/a~ 2 I ~  . . . .  i - 2 / 1 ' ~ 2 q ~  i + (,//°{4 + ~/"9~2)~bl 

= ir Re ~[(g, - c)(qS{' - ~2q), ) _ U;'qS,] [10a] 

is obtained. The modified equation includes four additional terms that arise from the spatially 
dependent viscosity profile. For the clear fluid, the governing stability equation is the following 
Orr-Sommerfeld equation: 

4 ) ~  * - -  20~2~ ' + (X4~b2 = i Re ~[(g2 - c)(4)2 - -  0(2(~e) - U2~b2]. [10b] 

Here the prime denotes differentiation with respect to y. 
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The boundary conditions for this problem include no slip or penetration at the walls, so 

4~,(- 1) = ~ ( -  1) = 0, [1 la] 

q~2(1/n) = ~b2(1/n) = 0. [1 lb] 

At the interface, we have the following requirements of continuity in velocity and stress: 

4,, - ~2  = 0 ,  [1 l c ]  

q ~ - ~ + ( u ~ -  u~)  -~ = 0 .  [ l l d ]  
¢ 

u4~' + u~24~', - q~' - .24~  + ( u ' u ~  + uu' l '  - u~') 4' = 0, [1 le] 
C 

- R e i ,  Fr I(1 - r )  ck + Re ia (U~r  - U'z)(o =Re i~c(c~- - rdp~) .  [ l lq  
c 

The additional terms in the stress boundary conditions[1 le] and [1 lf] arise from the viscosity profile 
in the suspension phase. Although the normal stress condition normally includes a surface tension 
term, there is no surface tension between the clear fluid and the suspension (Zhang et al. 1992). 

These two stability equations along with the eight boundary conditions constitute a complete 
eigenvalue problem for the complex wave speed in terms of the physical parameters Re, r, ~, n, 
/~ and m. For a temporal stability analysis the wavenumber is real and the wave speed complex. 
If the imaginary part of the complex wave speed is positive, the flow is unstable. Note that a 
completely rigorous stability analysis would first address the question of absolute versus convective 
instability. Zhang et al. (1992) examined this issue and concluded that this type of flow is 
convectively unstable but that temporal stability analysis will describe the instability using, if 
necessary, a Gaster (1962) transformation. Schaflinger (1994) also studied absolute interracial 
instability for two superposed fluids. 

3.3. Numerical procedure 

Several investigators (Zhang et al. 1992; Yiantsios & Higgins 1988), using different techniques, 
obtained the solutions of similar systems of equations for fluids with constant properties. In this 
study the Chebyshev tau spectral technique (Orszag 1971; Su & Khomami 1992; Gottlieb & Orszag 
1977) is used. Orszag (1971) explains that this technique is well suited for the solution of the 
Orr-Sommerfeld equation as well as other stiff boundary value and eigenvalue problems. 
Calculating all the eigenvalues of the spectrum with infinite order accuracy and without an initial 
guess are two advantages of the Chebyshev spectral technique. 

The solutions of the governing equations [10a] and [10b] are written as 
N 

49i(y ) = ~_, a~°T,(y), for i =  1 and 2, [12] 
n = 0  

where T,(y) are the Chebyshev polynomials and a~ ~) are the expansion coefficients of each phase 
(Rivlin 1990). To implement this technique, the stability equations, boundary conditions and base 
state profiles must be linearly transformed from global coordinates y into localized coordinates ~ 
and ~2- The respective mapping functions for the lower and upper phases are 

y = ½(~ - 1) [13a] 

1 
Y =~nn (~2+ 1). [13b] 

Each governing equation is valid over its localized domain, - 1 ~< ¢i ~< 1, and coupled through the 
interfacial boundary conditions. Next, the governing equations and boundary conditions are 
formally expanded in terms of Chebyshev polynomials. Appendix B gives the necessary expansions 
of the exponential functions. By equating the coefficients of the various T,(y) to zero, the equations 
for the expansion coefficients are obtained. To solve for these unknowns, the tau method (Fox & 
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and  the exper imenta l  data  for the condi t ions  of  figure 4. 

Parker 1968) is implemented. This involves the construction of a system of 2(N - 3) equations 
which, in combination with the eight boundary conditions and the kinematic condition, gives an 
algebraic eigenvalue problem consisting of 2(N + 3) equations. This procedure provides a simple 
way of transforming the differential eigenvalue problem into an algebraic eigenvalue problem of 
the form 

Ax = ~cBx, [14] 

where A and B are coefficient matrices of the expansions, x is the eigenvector of al{)'s and ~c is 
the eigenvalue. This problem is solved for the complex eigenvalue cw using Matlab TM. 

3.4. Numerical results and comparisons 

Figures 6 through 9 represent the numerical results obtained using the Chebyshev tau spectral 
technique for a suspension with both a constant viscosity and a spatially dependent profile. 
Common to all these plots is the occurrence of two kinds of unstable modes: interracial and 
internal. Yiantsios & Higgins (1988) discriminate these based on the shape of the eigenfunction. 
The disturbance velocity of the interfacial mode has a maximum at the interface and its streamlines 
encircle the interface. Conversely, the maximum disturbance of the internal mode is in the middle 
of the clear phase region and its streamlines are contained between the interface and the upper 
boundary. Over all wavenumbers, the speed of the interfacial mode is slightly greater than the speed 
of the interface and the speed of the internal mode is greater than the interfacial mode but less 
than the maximum upper phase fluid velocity. Both modes are present in the linear stability 
calculations for both suspension models. The speed of the internal modes indicate that they are 
disturbances in the clear fluid phase. Because the internal mode is centered in the clear fluid phase, 
it does not strongly influence the interface. Thus the interfacial mode is more likely than the internal 
mode to cause a process that leads to wave formation. Results for the internal mode are included 
for completeness, because the interfacial mode does not correctly predict the measured wavelength 
as would be expected if the waves form as a result of a two-layer instability. 
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To implement and compare the two stability models, appropriate values for the depth of the 
suspension phase are needed. If the viscous resuspension model described above were exactly 
correct, the depth of the resuspended phase could be calculated. Unfortunately, for a value of/~ = 1 
(the value corresponding to figure 5), the depth of the particle phase is comparable with a particle 
radius (for the present parameter ranges), which is not consistent with observations. Because the 
particle Reynolds number is not small compared with unity, inertial effects enable other lift 
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mechanisms making the moving particle phase much thicker than the zero Reynolds number limit. 
The purely viscous model is effectively a lower bound on the depth of resuspension. It is necessary 
to use fl as an adjustable constant that is obtained from experimental data. It must be emphasized 
that experimental observations of d~ are complicated by the difficulty in establishing the exact depth 
where the solids are no longer moving. Thus experimental depths are accurate to only within about 
30%. 

First, flo(=d~Apg/z) is calculated, based on a suspension depth of  1 cm. It was convenient to 
choose a reference value much deeper than the actual depth of the resuspended layer in our 
experiments. Next, fl is obtained by using 

fl0 
fl = g2 - (1/Rep) ' [15] 

where Rep is the particle Reynolds number and f2 is an adjustable constant. The form of empirical 
relation [15] was chosen to give the best representation of the particle phase experimental depths. 
The constant O was adjusted to minimize the error between the correlation [15] and experiments. 
Equation [15] effectively reduces the number of unknowns from 2, d~ and fl, to a single parameter 
O, which for our calculations is chosen to be 18.3. For a typical trial (shown in table 2), an increase 
in flow conditions decreases fl and increases the depth of the suspension dl, while the average 
viscosity increases only slightly. For the constant viscosity calculations, the depth of the lower 
phase is chosen where the skewed velocity profile is 5% of the interfacial velocity and the integral 
average of the lower phase viscosity profile is used for the suspension viscosity. 

Table  2. Values for the calculat ion of  the physical  pa ramete r s  fl, P~.v~ and d~ 

d (~m)  /t 2 (cP) v* (cm/s) Re~ flo fl ~].~ d I (cm) 

300 1 1.4 19.4 897 30.0 6.62 0.102 
300 1 2,1 40.4 429 14.3 7.07 0.220 
300 1 2.3 50.6 343 11.4 7.26 0.278 
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Experimental results Constant viscosity Spatial viscosity 
(cm-') ~ (cm ') ~ (cm -t) ~ (cm t) 

Op (#m) v* (cm/s) 2,v + (cm) ~,v+ (cm-I) in te rna l  interfacial in te rna l  interfacial 

300 1.4 4.4 140 75 40 80 40 
300 2.1 5.0 125 120 35 115 50 
300 2.3 7.0 80 125 35 120 50 
100 1.2 1.4 450 80 >600 80 190 
100 1.6 3.3 190 90 stable 90 35 
100 2.1 5.4 115 115 35 I10 45 

Different values of  f2 give slightly different values for the viscosity and depth but these do not 
substantially change the overall results or comparisons between the models. The effect of  various 
values of  f2 on the stability characteristics of  the exponential viscosity model is shown in figure 
7 and discussed below. 

Comparisons between the experimentally observed wavenumbers and the results for a suspension 
with constant viscosity results are shown in figure 6 and table 3. Figure 6 shows data for 300/zm 
spheres in a 4.3 cP liquid where the flow is always laminar. It is seen that the measured wavenumber 
does not correspond to the peak growth rate of  the interfacial mode except in the last plot. It 
likewise does not correspond to the peak of the internal mode. This is the first evidence that 
questions the possible link between stability analysis and the observed waves. Table 3 shows that 
similar disagreement exists for other data sets. Consequently, the agreement between experiments 
and linear theory is not good, suggesting that either the waves do not result from a linear instability 
or that the spatial variation of suspension properties is very important.  

The spatial viscosity model is first explored by varying parameters. Figure 7 illustrates the effect 
of  various values of  f2 on the growth rate of  the two modes. An increase in f2 results in an increase 
in the growth rate of the internal mode and no crucial change in the growth rate of  the interfacial 
mode. While the position of the peak of the internal mode changes for various f2, the more 
important  peak of the interfacial mode does not change. It is likely that the flow becomes turbulent 
for these cases. Note, however, that a transition to turbulence is possible even when the upper phase 
is not linearly unstable because channel flow turbulence occurs as the result of  a subcritical 
instability (Drazin & Reid 1981). 

Next, the effect of  the density ratio r is explored. Figure 8 shows the three most unstable modes 
for increasing values of the density ratio. An increase in the density ratio slightly decreases the 
wavenumber of  the most unstable internal mode, while the wavenumber of the most unstable 
interfacial mode remains approximately the same. At constant liquid friction velocity, the growth 
rate of  the interfacial mode increases slightly with an increase in the density ratio. Growth rates 
of  the internal modes change more notably. The effect of  the density ratio should be valid for all 
likely values of  particle concentrations in the lower phase. Figure 8 shows that the density ratio 
has a minimal effect on stability and suggests that omitting density variation from our model is 
probably justified. 

Figure 9 and table 3 show some comparisons between the numerical and the experimental data 
for the spatial viscosity model. While the theoretical results predict the occurrence of instability, 
the agreement between the position of the most unstable mode and the experimental wavenumber 
is lacking. There is again no consistent trend that would suggest a small error in the model resulting 
from the difference in the geometry. Furthermore,  the results for the spatially varying viscosity are 
no better than the constant viscosity model. Consequently, there is no evidence that the observed 
waves form from the direct result of  a linear instability. 

Waves at the interface between the suspension and the clear fluid were observed for some 
conditions. These are similar to those reported by Schaflinger (1994) who shows some excellent 
pictures. However these were difficult to capture on video and it was not possible to verify if they 
were present or not present because of the f low-or because of limited observational ability. It was 
possible to determine that these waves are much shorter than the waves that first appear on the 
surface of the bed. They have a wavelength of approximately 1 cm (628 m-~). These may 
correspond to the interfacial mode of  the constant suspension viscosity analysis, but unfortunately 
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this could not be confirmed because they are much shorter (i.e. have a higher wavenumber) than 
the first observed waves. Likewise, these would not agree with linear stability. 

Further evidence that the stability models do not predict waves is given by the discrepancy in 
the speeds of  the waves compared with predictions. As mentioned above, these values are close 
to the interfacial speed or the speed of  the liquid phase. This could be in the range 5-10cm/s.  
Typical speeds for observed waves are approximately 0.08 cm/s so that a serious disagreement 
exists. While this could be attributed to non-linear effects, the slow rate of  travel was observed for 
waves with very small slopes. One last area of  disagreement was the predicted linear growth rates. 
The calculations indicate that peak linear growth rates ranged from 0.1 to more than 10 s J. Typical 
values for experiments were from 10 4 to 10 3s 

In summary,  we find that the sand wave formation process is not consistent with linear wave 
growth for a two-layer flow. While it could result from limitations in the stability model, it is very 
likely that wave formation does not occur as the direct result of  an instability. Consequently, 
another approach is needed. 

4. S A L T A T I O N  M O D E L  FOR W A V E L E N G T H  

Figure 10 shows the experimental wavelength versus Froude number. There seems to be a 
correlation that closely approximates a line with a slope equal to one. Thus 

2 U 2 
~ - - ,  [161 

a g a  

where U is the average liquid velocity and 2 is the crest-to-crest wavelength. The wavelength is 
proportional  to inertial forces and inversely proportional  to gravitational forces. Relation [16] 
shows that the particle diameter a divides out and does not influence the relation between 
wavelength, inertia and gravity forces. It is possible that another length scale, such as d~ which could 
not be systematically varied or measured, should be used to non-dimensionalize the wavelength. 
However, this is not available for the present analysis. 

Several investigators including Bagnold (1954, 1956), Sumer (1984) and Rijn (1984) have used 
force balances on individual particles to describe the rate of  solids transport. Bagnold (1954) gave 
a description of how a saltating sand flow in air could lead to dune formation. However, he dismissed 
this mechanism for sand waves in water. Rijn (1984) predicted individual particle trajectories from 
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the force balance but no attempt was made to link these to the wavelength of the waves that 
form--perhaps  because he focused on flows too fast for waves to form. The predicted length of  
trajectories from his model are determined by the gravitational force and the velocity of the 
flow--consistent with [16]. It is reasonable to propose that the distance that particles travel before 
"landing" is the preferred wavelength. Thus a trajectory model for individual particles may provide 
insight into the mechanism of sand wave formation. 

Based on these ideas, it is possible to adapt the model of Rijn (1984) to predict the initial 
wavelength of  the sand waves. The primary difference in the present formulation is that the particle 
is assumed to be in the Stokes regime. Figure 11 represents the forces acting on a single sphere 
after it is set on a path at velocity UT, after it leaves the surface of  the settled bed. Equations [17], 
[18] and [19] represent the forces acting on a single sphere. 

FL ~f(F×), 

Fx = 6na/12(U~ - Ux(t)), 

F c = 4ApgTta3. 

[17] 

[18] 

[191 

Here FL is the lift force on a sphere, Fx is the lateral force, Fo is the gravitational force, U~. is the 
velocity of the fluid approaching the sphere and Ux(t) is the lateral velocity of  the sphere at time 
t. From the force balances, the acceleration on a single sphere in the x and y directions can be 
calculated. Then, the equations of motion, 

0 = U~o + ½ay t, [20] 

2 = U, ot + ½ax t2, [21] 

are solved for the distance 2 traveled in the x-direction, giving 

- + lax [221 
Apg 

In these equations, the terms as and ay represent the particle acceleration in the x and y directions, 
respectively. If Ux ( t )~  Us,  which should be valid for both large t and spheres that are already in 
rolling motion, there will be no acceleration in the x direction. Therefore, [22] simplifies to give 
the following expression for the distance traveled by the sphere: 

2 - 2ps U~0 U,~ [23] 
Apg 

The velocity components U~0 and Uy0 can be expressed in terms of UT to give 

a2-(2pssinOc°SO)Ap U~ag [24] 

Equation [24] shows that the distance a particle travels is proportional to the square of  the particle 
velocity and inversely proportional to the gravitational force on the particle. Using the slope of 
2/a versus (2pffAp)U2/ag from figure 10, which is approximately 0.287, the particle ejection angle 
is approximately 17.8 °. 

5. DISCUSSION AND S U MMA RY  

For the systems studied, experiments show that a flowing particle phase occurs on top of the 
settled bed and that periodic waves form on the bed. Based on studies by Liu (1957), Shirasuna 
(1973), Schaflinger et al. (1990), Zhang et al. (1992) and Schaflinger (1994), a possible explanation 
for this process is that the two-layer flow is unstable and that the waves are the manifestation of 
growth of the instability. Linear stability analysis using a constant viscosity model predicts that 
the two-layer flow is unstable because the viscosity of the two layers is different. However, measured 
values of the wavelength show no consistent relation to the predicted wavelength. A second model 
for the flow, which has a continuous viscosity across the interface but a variable viscosity with 
depth, exhibits somewhat different stability predictions than the constant model but no better 

IJMF 2U6--K 
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agreement with the data. It would be possible to derive more elaborate relations for the particle 
density and therefore the viscosity and density profiles in the suspension phase. However, it seems 
unlikely that changing these profiles would predict the data much better. It could be that the very 
thin moving particle phase, where the particles have saltation trajectories, cannot be accurately 
represented by a continuum model. In addition, as we have seen throughout our experimental 
results, the wavelength of the sand waves which first appear increases with flow rate of  the carrier 
fluid. This is the opposite of the trend that is expected using linear stability analysis. I f  it is still 
desirable to pursue the link between sand waves and the two-layer instability, another possibility 
is to model the suspension phase with a viscosity that is shear dependent. However, Schaflinger 
(1994) gives sound reasons, backed up with experiments and calculations, why this should not be 
necessary. 

Schaflinger (1994) states that the wavelength of the ripples formed in a monolayer of particles 
sheared by a laminar flow corresponds to the predictions of  his two-layer stability analysis. His 
result refutes, to some extent, our concern about  the correctness of  representing the lower phase 
as a continuum. Because his experiments are not described in detail, it is not completely clear if 
they are comparable with the present study. His value of Ap/p~ is about 0.007, which is much 
smaller than the value of 0.58 for the present experiments. As a consequence, there would be much 
less saltation in his experiments compared with the present ones. We could not see if ripples form 
on the top layer of  settled particles in our experiments. However if they do, they do not lead to 
the larger amplitude waves that occur in the settled layer. 

The likely scenario for the wave formation process is as follows. Once the two layers are flowing, 
the interface is unstable to short waves. These try to form but are limited to very small amplitude 
because the suspension phase has no surface tension. This means that protrusions of high particle 
concentration into the clear fluid phase are washed out because the clear fluid is moving faster. 
The mechanism for formation of waves in the settled bed is the saltation mechanism described 
above. Shearing the stationary particle bed causes resuspension and imparts an upward velocity 
with a definable trajectory angle. This leads to a preferred wavelength for the formation of sand 
waves. This mechanism suggests an interesting effect once the waves attain a sufficiently large 
amplitude. The slope of the waves will increase the ejection angle. A larger angle will cause longer 
flight distance which will cause the waves to travel and eventually cause the wavelength to increase. 
Both of these events are observed in the experiments. 

The trajectory model presented here omits some potentially important effects and cannot predict 
the key variable: the ejection angle. More elaborate analysis might provide some insight, as might 
more precise resuspension experiments. However, the experiments in this study demonstrate that 
formation of sand waves is consistent with a particle saltation mechanism and not with linear 
stability analysis of  the two-layer flow. 
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A P P E N D I X  A 

In this appendix we present equations for the coefficients of  the base state velocity profiles: 

C~ = ( - 2 A n  2 - 2Afln 2 + 2An 2 exp(/~) - -  Aft  2 exp(/~)m + 2/~2n 2 exp(~)mUp)/D, [AI] 

C2 = (A~ + 2An + 2Afln -- Aft exp(/~) -- 2An exp(/~) -- 2~n2Up + 2fin z exp(~)Up)/D, [A2] 

C3 = (2An 2 -- 2A~n 2 -- 2An 2 exp(/~) -- A/~ 2 exp(/~)m -- 4A~n exp(/~)m + 2f12n 2 exp(fl)mUp)/(mD), 

[A3] 

C 4 = (2An 2 + Aflm + 2Anm + 2Aflnm -- 2~n2mUv)/(mD), [A4] 
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where 

and 

D = 2 f i n ( i n  + n exp(fl) + fl exp(fl)m). [AS] 

A = --kd2/I.t2 . [A6] 

A P P E N D I X  B 

In this appendix we present some of the necessary expansions for the solution of our linear stability 
problem. Let the Chebyshev expansion of the disturbance amplitude functions ~b(x) be given by 

~b(y) = ~ a,T.O, ). [BI] 
n = O  

Chebyshev polynomials are represented by T n(y) and a. represents the expansion coefficients. We 
can further expand functions of qS(x) in terms of the linear operator L, as follows: 

L~b(y) = ~ b ,T , (y ) .  [B2] 
n - - 0  

Here b, represents the expansion coefficients under the linear operator L. Most of the necessary 
Chebyshev polynomial expansions required for the solution of this eigenvalue problem are given 
in Orszag (1971). Here we present only the additional expansions required due to the exponential 
viscosity profile in the lower phase. Derivatives of the disturbance amplitude function are given 
first. Then, we consider the Chebyshev expansions for the exponential function and the products 
of the exponential function with other functions. 

Since Orszag (1971) derives the Chebyshev expansions for the derivatives of q~(y), we do not 
present them here. However, we need an expansion for ~b'"(y). The coefficients for the expansion 
of the third derivative are given by the following: 

p ( - 1 - n + p ) ( l  n + p ) ( - l + n + p ) ( l + n + p )  
c n b n  = p =, + 3 4 ap. [B3] 

p + n =  l(mod 2) 

Here c , = 0 i f n < 0 ,  c0=2, and c , =  1 if n > 0 .  
It can be shown from the inner product relation by Chebyshev polynomials that the coefficients 

of the exponential function are given by the following: 

exp(cy) = ~ B, T, 0'), [B4] 
n = 0  

where 

2 ~o c2J+"  2 i ' j ' ( - - c i ) "  [B5] 
B, = ~, j= 22j+7.i0. + n) !  - c,, 

Here J, is the first Bessel function of order n. If we write the expansion for any function q~(y) as 
Lq~(y) = E~-0 A, T,(y), we can write the product of two functions as follows: 

exp(cy)qS(y)= ~ ~ A,,B,,T,,(y)Tm(y). [B6I 
m = O  n = 0  

Here we can use the relation for the product of two Chebyshev polynomials [B6], to expand the 
product of the two Chebyshev polynomials. 

T,O')TmO') = ½[T,+m(y) + Tt, ,,l(Y)]. [BY] 

It may be shown that the product of the exponential function with a Chebyshev expansion of some 
function ~b(y) is given by 

exp (cy)L~b (y) ' ' ' = (~d,_mA,_mBm+~dm ,,A,, ,B, ,  +~d,  ,A,+, ,B, , )  T,(y) ,  [B8] 
n = 0  L m = 0  

where d, = 0 if n ~< 0 and d, = 1 otherwise. This relation may be used for all the necessary products 
of exponentials and linear operators of qSO') in this pcoblem. 


